THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5210 Discrete Mathematics 2017-2018 Assignment 1 (Due date: 1 Feb, 2017)

1. Define a relation \sim on \mathbb{R}^2 such that $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.

- (a) Show that the relation \sim is an equivalence relation.
- (b) What are the elements of the equivalence class [(3, 4)]?
- (c) Describe the elements of \mathbb{R}^2/\sim .
- 2. Let $\mathbb{R}[x]$ be the set of all polynomials with real coefficients.

Define a relation ~ on $\mathbb{R}[x]$ such that $P(x) \sim Q(x)$ if and only if P(x) - Q(x) is divisible by $x^2 + x + 1$.

- (a) Show that the relation \sim is an equivalence relation.
- (b) Describe the elements of $\mathbb{R}[x]/\sim$.
- 3. Construct a concrete bijective function from \mathbb{Z}^+ to \mathbb{Z} .
- 4. Show that $\log(n^2 + 1)$ is $O(\log n)$.
- 5. (a) Show that $n \log n$ is $O(\log n!)$.
 - (b) Is it true that $n \log n$ is $\Theta(\log n!)$?
- 6. Let $\alpha > \beta > 1$. Show that β^n is $O(\alpha^n)$, but α^n is not $O(\beta^n)$.
- 7. Let k be a positive integer.
 - (a) Show that $1^{k} + 2^{k} + \dots + n^{k}$ is $O(n^{k+1})$.
 - (b) Is it true that $1^k + 2^k + \dots + n^k$ is $\Theta(n^{k+1})$?
- 8. (a) Show that for any positive integer $n \ge 2$,

$$\sum_{j=2}^{n} \frac{1}{j} < \int_{1}^{n} \frac{1}{x} \, dx.$$

(b) Let H_n be the *n*-th harmonic number

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

By using the result in (a), show that H_n is $O(\log(n))$